Minimally invasive orbital decompression: local anesthesia and hand-carved bone.


To investigate the safety and efficacy of a conservative orbital decompression using sharp-curette bony decompression and intraconal fat debulking through a transconjunctival incision in patients with thyroid-related orbitopathy and mild to moderate proptosis.


Retrospective, noncomparative, interventional case series.


Data from all patients undergoing minimal orbital decompression at the Jules Stein Eye Institute, Los Angeles, Calif, over a period of 4(1/4) years were collected and analyzed. Data included visual acuity, exophthalmometry measurements, intraocular pressure, complete slitlamp examination results, ocular ductions, new-onset primary or downgaze diplopia, and patient satisfaction. Conservative decompression was performed through a transconjunctival incision using a manual curette and by removing cortical bone from the zygomatic marrow space on the anterior rim of the inferior orbital fissure; intraconal fat was bluntly dissected and excised or suctioned with a Frasier tip aspirator.


Patient perception of pressure pain and ocular discomfort, proptosis, visual acuity, intraocular pressure, postoperative complications, and new-onset primary or downgaze diplopia.


Eighty minimally invasive orbital decompression surgeries were performed in 48 patients (6 male, 42 female). Six surgeries (4 patients) were performed for prominent globes with relative proptosis and no thyroid-related orbitopathy (non-Graves proptosis). All patients had improvement in congestive orbitopathy and pressure pain associated with thyroid-related orbitopathy. Exophthalmos decreased by a mean +/- SD of 2.4 +/- 2.6 mm from 22.7 +/- 2.5 mm (range, 17-29 mm) to 20.3 +/- 2.3 mm (range, 14-25 mm) (P<.001 [95% confidence interval, 1.8-3.0]). Mean visual acuity improved after surgery (P = .02). One patient (2.1%) developed postoperative primary or downgaze diplopia; he underwent successful eye muscle surgery at a later stage. No complications were associated with orbital decompression.


Minimally invasive orbital decompression surgery with intraconal fat debulking in this group of patients was effective in proptosis reduction; improvement in subjective pressure pain and high patient satisfaction were noticed. Surgery was associated with a low rate (2.1%) of new-onset primary or downgaze diplopia. Proptosis reduction using a graded approach accounting for 4 mm of retrodisplacement was achieved.